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Quantification of metabolites in *H spectra is difficult because of
the presence of an unwanted water signal. Preprocessing, or re-
moving the water contribution of a *H spectrum, in the time
domain is usually done using the state-space approach HSVD.
HSVD removes the residual water and its side lobes, thereby
reducing the baseline for the metabolites of interest and allowing
subsequent data analysis using more sophisticated nonlinear least
squares algorithms. However, the HSVD algorithm is computa-
tionally expensive because it estimates the signal subspace using
the singular value decomposition (SVD). We show here that re-
placing the SVD by a low-rank revealing decomposition speeds up
the computations without affecting the accuracy of the wanted
parameter estimates. © 1998 Academic Press

Key Words: rank-revealing orthogonal decomposition; singular
value decomposition; water removal; exponential data modeling;
MRS data quantification.

INTRODUCTION

rather than the actual measurements. Other types of model li
forms can be used. This class of methods provides maximu
likelihood estimates in the case the model assumption is corre
and the noise is white and Gaussian. In these algorithn
biochemical prior knowledge can easily be incorporated t
improve parameter accuracy.

In this paper we focus our attention on the quantification o
H signals. In the absence of water suppression techniques |
H signals are characterized by a dominating water peak th
can be 18to 10* larger than the metabolites of interest (which
lie on the broad “tails” of the water resonance). Although
instrumental methods can be used to suppress the water in
spectrum, it is impossible to eliminate the water completel
without affecting the metabolites of interest over a relativel
wide frequency range. Therefore, a water resonance alwa
remains present in the signal. The intense water peak cannot
described by an analytic function, mainly because of magnet
field inhomogeneity and measurement suppression techniqu

Accurate and efficient quantification of MRS (magnetic resd-"uS: the water resonance makes it impossible for NLLS tim
nance spectroscopy) signals is extremely important in medi€@main methods to quantify the peaks of interest reliably. As
diagnosis or biochemical analysis. In the time domain, nonlinggfNS€dquence, a preprocessing step Is necessary to remove

least squares (NLLS) algorithms such as VARPRDahd AM-

unwanted water contribution.

ARES @) have proven to be very reliable in recent years. TheseSome of the preprocessing algorithn®-10 to remove the
methods Common'y use a sum of exponentia"y damped Sinusdigg|dual water resonance use crude appl’OXImatlonS to remove

(Lorentzian lines after Fourier transformation) to fit themea-

wings of the water resonance, introduce changes in the peak a

sured data pointg. In particular, the model function is given byand phases of the resonances lying on the tails of the solve

K
yl — 9_’_ e = 2 aké¢ke(_dk+j27ffk)tl + e
k=1

l=0,1,...,N—-1, [1]
whereK is the model ordel, = V —1, a is the amplitudeg,
is the phase anglej, is the damping factor, and, is the
frequency of thekth sinusoid (fork = 1, ...,K). Here,t, =

resonance, or constitute too much of an extra computation
burden to the spectral analysis. HSVIL), however, a so-called
black box method, has been found particularly usefd.(Al-
though limited prior knowledge can be used in black box metf
ods, they often provide a very good mathematical fit of the
original data. HSVD can therefore be used to get a good fit of tF
water resonance, including its large tails. The fitted water regic
is subsequently subtracted from the original signal. Reliable ar
accurate NLLS algorithms are then used to analyze the residt
signal to quantify the metabolites of interest.

Efficiency is of primary importance in MR spectroscopic

IAt + to, whereAt is the sampling interval (nonuniform sam-
pling vectors are also validf, is the time between the effectiveimaging. A single metabolite image typically requires 82

time origin and the first data point to be included in th&2 = 1024 times the removal of the water resonance. The ma
analysis, an@ is complex white Gaussian noise. The caret otrawback with HSVD, however, is the large computationa
y indicates that this quantity represents the model functidtmad associated with the SVD of the data matrix. In this pape
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we show that the SVD can be replaced by a more efficieracommended to choodeas square as possiblag), that is,
low-rank algorithm. It is shown here that the new, fast algon = n(+1) = N/2.

rithm yields significant time savings in this application. Step 3.TruncateT to a matrixT, of rank K:
The paper is organized as follows. In the next section we
will briefly outline HSVD. We will define low-rank revealing Te = U S VR,

decompositions and show how they can be used to replace the

SVD. In the simulation section we will show that this neVUK andVK are, respective|y, the firgt columns ofU andv; EK
method is as accurate as HSVD and we will also illustrate tigthe K x K upper-left submatrix oE. The model ordeK is
obtained gain in efficiency. Finally, this gain in efficiency ighosen equal to the number of sinusoids that comprise tl
illustrated by analyzing part of a MRS image. measured signal. In case a water peak is present we have
To discuss and illustrate the methods, we use simulated agage into account the non-Lorentzian lineshape of this peak.
in vivo low-resolution spectra usually encountered in medicglactical situations only a few Lorentzians are needed to d
spectroscopy. The new method is applicable to high-resolutiggribe the water regiorp).
Spectra obtained in other fields as We”, since similar SVD- Step 4_C0mpute the least squares so'ut%of the fo”owing
based algorithms have already been applied to such spegfigompatible) system:
(13). Further, the new method can be extended to the analysis
of two-dimensional spectral4) much like HSVD. VOER =~ V),
We mention that HLSVD, a fast version of HSVD, has

already been developed in ReLy. HLSVD is based on the whereV? andV{ are derived fromv, by omitting its first and

Lanczos procedurelg) and gives computational savings in| . : ; . :
) . row, r ively. OncE i im i igenval
most cases. However, HLSVD has the disadvantage that it caSt ow, respectively. Once is estimated, it eigenvalues

slow down in case of repeated or close singular vald&s. ( gq\Ve the signal pole estimates:
The Lanczos method also suffers from the loss of orthogonality .

of the Lanczos vectors in finite precision and lacks rigorous =€
supporting theory. The newly developed algorithm offers

nearly the same computational savings as the Lanczos prdcé2m these signal poles it is easy to obtain estimates of tt

(CacizmoN | =1, K.

dure but does not suffer from these drawbackd.( dampingsd, and frequencie§..
Step 5.Finally, fill in the estimateg,, k=1, ... ,K, in the
METHODS AN model equations and compute the least squares soliten
adh k=1,...,K, of
HSVD
K
The underlying principles of HSVD are discussed irb)( vi=S i, =0 N— 1
and will not be repeated here. Next we give a short outline of ! = ko T '
the HSVD algorithm.
HSVD. _ . In this way estimates for the amplitudasand phases, are
Step 1.Arrange the data pointg, | = 0,...,N — 1, ina gptained.
Toeplitz matrixT as follows: Note that here the data are arranged in a Toeplitz matr
instead of a Hankel matrix and that the left signal subspéce
Ym-1 Ym0 Yn-a is used instead o) as is done in15). Both modifications
T= Ym-2 Ym-1 " Yn-2 have been made to make the similarity between HSVD and tf
- ’ new method as great as possible, but they do not change
Yo Vi o Va1 properties of the algorithm.
m=K N=m+n-—1. 2] The computationally most intensive part of the algorithm is th

computation of the SVD of then X n matrix T, which requires
. ~ O(mr? + n®) floating-point operationg)( - ) denotes the order of
Step 2.Compute the SVD of the Toeplitz matrik that is, magnitude). The least squares solutibican be computed effi-
ciently by making use of the Sherman—Morrison matrix-inversiol

Trin = Uncm 2 mcn Vins formula (L6). As can be seen from the preceding algorithm, th
. full SVD is not required. Instead, only the fitstcolumns ofV are
whereX = diagoy, . .., 0y), 01= =0y, required, which estimates the signal subspace. $risausually

much smaller tham, much of the computational effort in com-
p = min(m, n), and the superscrigl denotes the Hermitian puting a full SVD is wasted. Therefore, we introduce a new matri
conjugate. In order to obtain the best parameter accuracy idecomposition recently introduced in numerical linear algebr
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(17). These so-called low-rank revealing decompositions onlbe reduced to a complex unit vector. Note that these Hous
compute approximations to the desired signal subspace, resultioider matrices are entirely defined by one veaor

in considerable computational savings.

SinceP® andQ™ are Hermitian and unitary, we can easily

deduce from Eq. [4] that the matrices have the followinc

HLR

A rank-revealing ULV (RR ULV) decomposition df is of
the following form:

partition:

PY = [uge ™, P"] andQ® = [vide 7%, QF'].

It is then easy to see that elements 2 throuogtf the first row

T=0L L= 2 , [3]

where L, is a lower triangulaik X K matrix whose singular
values approximate the firktsingular values of. The 2-norm of
(H, E) is of the same order of magnitude as tket 1)th singular
value ofT. U andV are unitary matriced/,, consisting of the first
K columns ofV, approximates the signal space. Speoatrank

revealing (LRR) decompositions have been develodé&dl (o

handle the case in which the dimension of the signal sub_spacé(
small, that isK < n. We can use a LRR algorithm to compMg | 2

and use it as an estimate for the signal subspace insteacJ'Q)ﬁm’

computing a full SVD and truncating to rankK. Several ver-
sions of LRR algorithms have been developgd, (9. In caseK

< n these algorithms are able to compi#g much more effi-
ciently than their SVD counterparts. The algorithm present&ﬂr
here, originally developed by R. Fierro, has the same propertie
the algorithms published inl{), but makes optimal use of the
Toeplitz structure of the original data matrix and therefore resu

of L = PATQ? are equal to zero:

DAl — O OFADY) — _
Uge TQY = oa(vee Q) = 0(0) = 0.

Throughout the algorithm the relatidh= U®LV®" has to hold.
Therefore,U® = PW" andv® = Q. The matricedd ® and
V®, however, need not be computed explicitly. Indeed, as show
earlier, the associated Householder vectors are therefore used
stored instead as shown in the following outline of PFLULV. The
e procedure is then repeated on the submigRim, 2:n) =
TQD, which, however, is not explicitly formed. The notation
j:n) is used here to denote a submatrix aonsisting of the
rowsi to mand columng to n. In this way the original Toeplitz
structure ofT is preserved, allowing fast matrix-vector multipli-
cations R0) using the fast Fourier transform (FFT) to be per-
med each timeil),is estimated using the Lanczos procedure
ther big advantage of HLR is the fact that the & n)
oeplitz matrix need not be stored in computer memory sinc
Rgatrix-vector multiplications withT or T" which need to be

in the largest computational savings), It is called the Product performed during the course of the algorithm are entirely define

Form LULV algorithm (PFLULV). Next, we give a brief descrip- by the original data vectog, . . .
PFLULV.

tion of the algorithm.

» Y1 (20).

First, an estimate(® of the left singular vector belonging tothe  Step 1.Initialize u© < []and V@ [ ], where []
largest singular value of is estimated. Therefore the Lanczo$lenotes the empty matrix.
method (6) is used. The stopping criterion for the Lanczos Step 2.Fori = 1:K

iterations is based on the current singular value estigatem-
puted during thgth iteration and the method proceeds uwfik
8,1l < m8;, wheren = O is a threshold or a maximum number of
iterations is reached. For MRS applications the threshold can be
set to & — 03 and the maximum number of iterations to 15, as
done in this paper. Based aff);an estimate of the largest singular
value ¢, of T and corresponding right singular vectdt) are
computed, that isg< = [T"ul andvi = (Tu)/od. The
vectorsul,andv, are then reduced to a complex unit vector by
Householder transformationd§) represented by Householder
matricesP® and Q®:

PYUL = (e, 0,...,0"andQ"L = (e/%,0,...,0". [4]

| - || denotes the Euclidean vector norm. In general the House-
holder matrixP is of the formP = | —2z2/z"z, wherel is the
identity matrix,z = x + sign(x(1))x/I(1, 0, . . ., OY, sign(x(1)) is
equal to the sign of the first elementxyfandx is the vector to

Step 2.1Compute estimatail), of L(i:m, i:n) =
S PIH x T x 321 QY. Com-
pute ol = [IL(i:m, i:n)"ulljl andvil,
= (L@i:m, i:n)™ ul2)/ol),.

Step 2.2Determine the Householder vectasand
z, which determine Householder matrices
PO and Q" such thatP®Vul), = (€,
0,...,0)0 and QWv{), = (&°, 0,
..., 0)T. Omit the first column oP® and
Q" to define the related submatrice$’
and QY.

Step 2.3Append the Householder vectagsandz,,:

TG - 0 i) — | - 0
U(>: {U( 1), [Zu]] andv()_ [V( l), {ZV]] ,

0 represents the zero vector/matrix of ap-
propriate dimensions.
End (For)
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FIG. 1.
zooms in on the region of interest.

Step 3.Use (16) Algorithm 5.1.2 to accumulate thi¢ col-
umns of V%) to obtain the estimat¥, for the signal subspace

as follows:

[5 &l

I« represents the identity matrix of sike X K.
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Frequency domain representation of noisy simuldtédpectrum ¢ = 0.8). In the left figure the entire signal is represented; the figure to the rigt

SIMULATIONS

In this section we address the accuracy and the efficiency
HLR compared to HSVD when used to preproctdspectra.
To this end we perform a Monte Carlo study. The simulatiol
signal we use is derived from an vivo *H NMR echo signal
and was previously used i21). From the noiseless signal 400
noisy realizations were generated with noise standard deviatif
o (both on the real and imaginary parts). One of the used nois
simulation signals is displayed in Fig. 1.

The algorithm HLR is obtained by replacing the SVD by the The following signal processing protocol is applied to all
PFLULV algorithm. The outline of HLR is then as follows: Simulation signals:

HLR. )
Step 1.ComputeVy using PFLULV. ~
Step 2-3SeeStep 4-50f HSVD with Vi replaced byv.

RMSE for amplitude of peak 1 (0:HSVD, x: HLR)
03 T T T T T

ox

025+ 1

ox

) . L . L L L
0.4 0.45 05 0.55 0.6 0.65 0.7 0.75 0.8
noise standard deviation

1. The entire signal is fitted using HLR or HSVD, and the
model ordeK = 10 is used. To this end the 512 data points ar
arranged in a 25X 256 Toeplitz matrix.

RMSE for amplitude of peak 2 (0:HSVD, x: HLR)
0.32 T T T

T T T T

0.3 B

0.28 1

0.26 B

X O

0.24 -

0.22-

0.2+ 1

0.16
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04 045 05 0.55 0.6 0.65 0.7 0.75 0.8
noise standard deviation

FIG. 2. RMSE for amplitudes of peak 1 and 2 of the simulation signal for different values of the noise standard deviation after removal of the wate
and quantification of the residual metabolites using AMARES. The crosses and the circles denote that the water peak was removed using HLR anc
respectively. In the water removal preprocessing step the model order used was 10 and the data were arranged bé @& matrix.
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TABLE 1 0.02
Comparison between SVD and LRR, HSVD
and HLR in Terms of Flops

0.015F b

0.011

=04 o0=05 o0=06 o0=07 o0=0.8

0.0051

—0.005

SVD/LRR 57.4 57.2 57.0 56.8 56.2
HSVD/"HLR 47.0 46.9 46.9 46.8 46.6

magnitude

Note.In the first row the ratio of the number of flops (in MATLAB) needed
by SVD to that required by the LRR algorithm PFLULV are displayed as a
function of the noise level. In the second row the ratio of the number of flops _g 015} |
required by HSVD to that required by HLR are displayed as a function of the
noise level. The imposed model ord€ris 10 and the size of the data matrix 0.0 T Bso0 600 400 200 0 200 400 600 800 —1000
used is 257X 256. He

FIG. 3. Frequency domain representation of ianvivo *H signal of the
MRSI data set. The water region is defined as all peaks with a frequency high
2. The peaks with frequencies belonging to the water regithan —78 Hz.
(defined as the region below 20 Hz) are used to reconstruct the

-0.01¢

water peak. atrix. Here a flop denotes a floating-point operation, either &
3. The reconstructed signal is subtracted from the originré'ﬂ L P genot ating-p b ’
signal. addition or a multiplication. This measure gives a computel

independent comparison of the computational complexity ¢
the two algorithms. We also compared the overall number
flops required by HSVD and HLR. The results for different
We compared HLR and HSVD using the root mean-squaneise levels are displayed in Table 1.
error (RMSE) of the final parameter estimates. In Fig. 2 the To get an idea of the difference in actual execution time
RMSE of the amplitudes of peak 1 and 2 obtained by removitgtween HSVD and HLR we implemented both algorithms it
the water via HSVD and HLR and subsequent quantification BORTRAN 77 making use of the BLAS and LINPACK librar-
the residual signal with AMARES are compared. For peakiés (available from netlib22)). The timing experiments were
the RMSE obtained using HSVD preprocessing is slightlyerformed on a SUN ULTRA 2 (200 MHz). The results are
lower than that obtained using HLR preprocessing. For pealdBplayed in Table 2. Although the timing results are compile
the situation is reversed. For the other peaks the situationaisd computer dependent, Table 2 indicates the gain in ef
similar—the obtained RMSEs of all parameters using HSVEiency in terms of actual CPU times is a factor of 35 to 40 ir
preprocessing and HLR preprocessing are almost the same tisl particular caseK = 10, a 257X 256 data matrix). The
neither of the two methods leads to an overall lowest RMSEPU time needed by HLR to quantify one of these simulatiol
It can be concluded that both methods, when used to subtrsignals is of the order of 0.3 s as opposed to 11 s for HSVL
the water peak, lead to a comparable parameter accuracy ofthe subsequent analysis using AMARES takes &lRos per
metabolites of interest obtained after the final parameter estignal. This shows that preprocessing using HSVD takes mo
mation with a NLLS algorithm. time than the actual quantification using AMARES, which is o
As a measure of efficiency we compare the number of flopsurse unacceptable, especially when a large amount of d
(obtained by MATLAB) required by PFLULV to the humberhas to be analyzed.
of flops required by the SVD for a 25% 256 Toeplitz data

4. The residual signal is quantified using AMARES énd
estimates of the metabolites of interest are obtained.

APPLICATION TO IN VIVO MRS IMAGE

TABLE 2 This fast algorithm is particularly useful when a lot of data
Comparison between SVD and LRR, HSVD needs to be processed as is the case in MRSI. To illustrate t
and HLR in Terms of CPU Times gain in efficiency in the analysis oh vivo MRS signals we

compare the performance of HLR and HSVD to analyze part

7-04 0=05 0-06 0207 0208 ., MRSI data set. The data set under investigation was me
{SVDALRR 42.3 455 41.8 39.9 39.8 Sured at the University of Alabama at Birmingham and pro
'HSVD/HLR 37.4 40.2 36.9 35.2 35.2 vided by Dr. J. A. den Hollander, Center for NMR Researcl

and Development, University of Alabama at Birmingham (se

Note. In the first row the ratio of the CPU time needed by SVD to thahcknowledgments) The measurements were performed on
required by the LRR algorithm PFLULV are displayed as a function of th )

noise level. In the second row the ratio of the CPU time required by HSVD i‘S_T ACS/S15 PhlleS Gyroscan, using a pl’OtOCOl develope

that required by HLR are displayed as a function of the noise level. THY Philips Medical Systems2g).
imposed model ordef is 10 and the size of the data matrix used is 25256. Since we wanted to process only signals containing meta
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JoX19° ' ' ' ' . . _ . TABLE 4
Total CPU Time Needed by HSVD and HLR to Preprocess 20
8 . Signals of an MRS Image Consisting of 256 Data Points Each for
Imposed Model Orders of 5, 10, and 20
oL i
. al | K=5 K =10 K =20
E’;’ L i 'HSVD 209 s 20.1 s 204 s
HLR 2.16s 4.07s 10.77 s
0 WWMWWM ‘HSVDHLR 9.7 5.0 1.9
—af E Note. The ratios between the needed CPU times are also depicted.

_4 L . . " " L L " .
1000 800 600 400 200 o —200 -400 -600 ~800 -1000
Hz

. . . . ) CONCLUSIONS
FIG. 4. Frequency domain representation of thevivo *H signal of Fig.

3 after removal of the water contributions using HLR and a model order of 5. . . .
g In this paper HLR is presented as an alternative to HSVD fc

the removal of the water peak itH spectra. HLR uses a
olites of interest, 20 signals from the middle region of thw-rank revealing decomposition to extract the signal suk
image were selected and preprocessed. In these signals cospiace instead of a full SVD as done in HSVD. This results i
butions from water have to be removed. If the entire image dsconsiderable improvement in efficiency without affecting the
to be processed the protocol explained8)(can be used. accuracy of the parameters of interest. The latter can be es

An exponentially damped sinusoid is assumed to contribuigated after the preprocessing stage by means of an iterati
to the water peak if it has a frequency higher thar8 Hz. See nonlinear least algorithm such as AMARES.
Fig. 3 for a representative signal. The gain in efficiency depends on both the number of dat
The number of data points used in the preprocessing stage ywats of the signal and the imposed model order, and is mo
512. Five exponentials were enough to remove the contributigh®nounced when the number of data points becomes larg
from water. Figure 4 displays the signal of Fig. 3 after prepr@md the model order smaller. For a typical signal consisting
cessing with HLR (the imposed model order was 5). 512 data points and a model order of 10, the CPU time require
To show, however, the influence of the chosen model ordgy HLR is less than that required for HSVD by a factor of
on the efficiency of the algorithm, model orders of 10 and 2§bout 35 to 40.
were also used. The total CPU time needed to preprocess 20
signals using HLR and a model order of 5 is only 3.15 s ACKNOWLEDGMENTS
compared to 259.6 s using HSVD. The use of HLR in this case
represents a reduction of a factor of 82.4 in CPU time. AsThe authors thank Dr. J. A. den Hollander, Center for NMR Research ar
illustrated in Table 3, the gain in efficiency decreases as m&hﬁg’;'%paq‘:ngf the University of Alabama at Birmingham, for providing the
exponentials a'fe estimated. . The first author is a Ph.D. student funded by the IWT (Flemish Institute fo
To show the influence on the number of data points used, #&port of Scientific-Technological Research in Industry). The third author
same analysis for different model orders is done using only 2&26Research Associate with the F. W. O. (Fund for Scientific Research-
data points. The results are displayed in Table 4. As expecté@nders). This work is supported by the Belgian Programme on Interunive
the gain in efficiency decreases when the number of data poiﬂ%Poles of Attraction (IUAP-4/2 & 24), initiated by the Belgian State, Prime

. . Minister’s Office for Science, Technology and Culture, by the EU Programm
decreases. Although the use of only 256 data points is una‘Fr_aining and Mobility of Researchers,” project ERB 4061 PL 97-0945, and

peptable for this type of applicatiqn, it nonetheless ShOWS tBEa Concerted Research Action (GOA) project of the Flemish Community
influence of the number of data points on the actual CPU timestitled “Model-based Information Processing Systems.”

TABLE 3 REFERENCES

Total CPU Time Needed by HSVD and HLR to Preprocess 20
Signals of an MRS Image Consisting of 512 Data Points Each for
Imposed Model Orders of 5, 10, and 20

1. J. W. C. van der Veen, R. De Beer, P. R. Luyten, and D. van
Ormondt, Accurate quantification of in vivo 3*P NMR signals using
the variable projection method and prior knowledge, Magn. Res. in
Med. 6, 92-98 (1988).

K=5 K =10 K =20
2. L. Vanhamme, A. van den Boogaart, and S. Van Huffel, Improved
HSVD 2506 s 25435 263.7 s method for accurate and efficient quantification of MRS data with
HLR 3155 70s 19.8's use of prior knowledge, J. Magn. Reson. 129, 35-43 (1997).
'HSVD/HLR 82.4 36.3 13.3 3. A. Bielecki and M. H. Levitt, Frequency-selective double-quantum-

filtered COSY in water, J. Magn. Reson. 82, 562-570 (1989).
Note. The ratios between the needed CPU times are also depicted. 4. D. Marion, M. lkura, and A. Bax, Improved solvent suppression in



10.

11.

12.

13.

FAST REMOVAL OF RESIDUAL WATER IN PROTON SPECTRA

one- and two-dimensional NMR spectra by convolution of time-
domain data, J. Magn. Reson. 84, 425-430 (1989).

. Y. Kuroda, A. Wada, T. Yamazaki, and K. Nagayama, Postacquisi-

tion data processing method for suppression of the solvent signal,
J. Magn. Reson. 84, 604-610 (1989).

. M. Derich and X. Hu, Elimination of water signal by postprocessing,

J. Magn. Reson. A 101, 229-232 (1993).

. K. J. Cross, Improved digital filtering technique for solvent sup-

pression. J. Magn. Reson. 101, 220-224 (1993).

. J. H. J. Leclerc, Distortation-free suppression of the residual water

peak in proton spectra by postprocessing, J. Magn. Reson. B 103,
64-67 (1994).

. C. J. Craven and J. P. Waltho, The action of time-domain convo-

lution filters for solvent suppression, J. Magn. Reson. B 106, 40-46
(1995).

G. Zhu, D. Smith, and Y. Hua, Post-acquisition solvent suppression
by singular-value decomposition, J. Magn. Reson. 124, 286-289
(1997).

H. Barkhuysen, R. de Beer, and D. van Ormondt, Improved algo-
rithm for noniterative time-domain model function to exponentially
damped magnetic resonance signals, J. Magn. Reson. 73, 553-557
(1987).

A. van den Boogaart, D. van Ormondt, W. W. F. Pijnappel, R. de
Beer, and M. Ala-Korpela, Removal of the water resonance from *H
magnetic resonance spectra, in ‘‘Mathematics in Signal Processing
" (J. G. McWhirter, Ed.), pp. 175-195. Clarendon, Oxford (1994).
R. de Beer, A. van den Boogaart, E. Cady, D. Graveron-Demilly, A.
Knijn, K. W. Langenberger, J. C. Lindon, A. Ohlhoff, H. Serrai, and
M. Wylezinska-Arridge, Multicentre quantitative data-analysis trial:
The overlapping background problem, in “Eurospin Annual 1995-
1996. Istituto Superiore Di Sanita” (F. Podo, W. M. M. J. Bovee,

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

203

J. D. de Certaines, O. Henriksen, M. O. Leach and D. Leibfritz,
Eds.), pp. 341-365, Rome (1996).

R. de Beer, D. van Ormondt, and W. W. F. Pijnappel, Maximum
likelihood estimation of poles, amplitudes and phases from 2-D
NMR time domain signals, in “‘Proceedings, ICASSP 89,” pp.
1504-1507, Glasgow, Scotland (1989).

W. W. F. Pijnappel, A. van den Boogaart, R. de Beer, and D. van
Ormondt, SVD-based quantification of magnetic resonance sig-
nals, J. Magn. Reson. 97, 122-134 (1992).

G. H. Golub and C. F. Van Loan, “Matrix Computations,” Johns
Hopkins Press, Baltimore (1993).

R. D. Fierro and P. C. Hansen, Low-rank revealing UTV decompo-
sitions, Numerical Algorithms 15, 37-55 (1997).

S. Van Huffel, H. Chen, C. Decanniere, and P. Van Hecke, Algo-
rithm for time-domain NMR data fitting based on total least
squares, J. Magn. Reson. A 110, 228-237 (1994).

R. D. Fierro, L. Vanhamme, and S. Van Huffel, Total least squares
algorithms based on rank-revealing complete orthogonal decom-
positions, in ““Recent Advances in Total Least Squares techniques
and Errors-in-Variables Modeling” (S. Van Huffel, Ed.), pp. 99-116.
SIAM, Philadelphia (1997).

C. F. Van Loan, “Computational Frameworks for the Fast Fourier
Transform,” SIAM, Philadelphia (1992).

“Eurospin Annual 1994 (F. Podo, W. M. M. J. Bovée, J. D. de
Certaines, O. Henriksen, M. O. Leach, and D. Leibfritz, Eds.),
Instituto superiore di sanita (1994).

ftp://ftp.netlib.org.

R. de Beer, F. Michiels, D. van Ormondt, B. P. O. van Tongeren,
P. R. Luyten, and H. van Vroonhoven, Reduced lipid contamination
in in vivo *H MRSI using time-domain fitting and neural network
classification, Magn. Reson. Im. 11, 1019-1026 (1993).



