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Quantification of metabolites in 1H spectra is difficult because of
the presence of an unwanted water signal. Preprocessing, or re-
moving the water contribution of a 1H spectrum, in the time
domain is usually done using the state-space approach HSVD.
HSVD removes the residual water and its side lobes, thereby
reducing the baseline for the metabolites of interest and allowing
subsequent data analysis using more sophisticated nonlinear least
squares algorithms. However, the HSVD algorithm is computa-
tionally expensive because it estimates the signal subspace using
the singular value decomposition (SVD). We show here that re-
placing the SVD by a low-rank revealing decomposition speeds up
the computations without affecting the accuracy of the wanted
parameter estimates. © 1998 Academic Press

Key Words: rank-revealing orthogonal decomposition; singular
value decomposition; water removal; exponential data modeling;
MRS data quantification.

INTRODUCTION

Accurate and efficient quantification of MRS (magnetic reso-
nance spectroscopy) signals is extremely important in medical
diagnosis or biochemical analysis. In the time domain, nonlinear
least squares (NLLS) algorithms such as VARPRO (1) and AM-
ARES (2) have proven to be very reliable in recent years. These
methods commonly use a sum of exponentially damped sinusoids
(Lorentzian lines after Fourier transformation) to fit theN mea-
sured data pointsyl. In particular, the model function is given by

yl 5 ŷ 1 el 5 O
k51

K

ake
jfke~2dk1j2pfk!tl 1 el

l 5 0, 1, . . . ,N 2 1 , [1]

whereK is the model order,j 5 =21, ak is the amplitude,fk

is the phase angle,dk is the damping factor, andfk is the
frequency of thekth sinusoid (fork 5 1, . . . , K). Here,tl 5
lDt 1 t0, whereDt is the sampling interval (nonuniform sam-
pling vectors are also valid),t0 is the time between the effective
time origin and the first data point to be included in the
analysis, andel is complex white Gaussian noise. The caret on
y indicates that this quantity represents the model function

rather than the actual measurements. Other types of model line
forms can be used. This class of methods provides maximum
likelihood estimates in the case the model assumption is correct
and the noise is white and Gaussian. In these algorithms
biochemical prior knowledge can easily be incorporated to
improve parameter accuracy.

In this paper we focus our attention on the quantification of
1H signals. In the absence of water suppression techniques the
1H signals are characterized by a dominating water peak that
can be 103 to 104 larger than the metabolites of interest (which
lie on the broad ‘‘tails’’ of the water resonance). Although
instrumental methods can be used to suppress the water in the
spectrum, it is impossible to eliminate the water completely
without affecting the metabolites of interest over a relatively
wide frequency range. Therefore, a water resonance always
remains present in the signal. The intense water peak cannot be
described by an analytic function, mainly because of magnetic
field inhomogeneity and measurement suppression techniques.
Thus, the water resonance makes it impossible for NLLS time
domain methods to quantify the peaks of interest reliably. As a
consequence, a preprocessing step is necessary to remove the
unwanted water contribution.

Some of the preprocessing algorithms (3–10) to remove the
residual water resonance use crude approximations to remove the
wings of the water resonance, introduce changes in the peak area
and phases of the resonances lying on the tails of the solvent
resonance, or constitute too much of an extra computational
burden to the spectral analysis. HSVD (11), however, a so-called
black box method, has been found particularly useful (12). Al-
though limited prior knowledge can be used in black box meth-
ods, they often provide a very good mathematical fit of the
original data. HSVD can therefore be used to get a good fit of the
water resonance, including its large tails. The fitted water region
is subsequently subtracted from the original signal. Reliable and
accurate NLLS algorithms are then used to analyze the residual
signal to quantify the metabolites of interest.

Efficiency is of primary importance in MR spectroscopic
imaging. A single metabolite image typically requires 323
325 1024 times the removal of the water resonance. The main
drawback with HSVD, however, is the large computational
load associated with the SVD of the data matrix. In this paper
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we show that the SVD can be replaced by a more efficient
low-rank algorithm. It is shown here that the new, fast algo-
rithm yields significant time savings in this application.

The paper is organized as follows. In the next section we
will briefly outline HSVD. We will define low-rank revealing
decompositions and show how they can be used to replace the
SVD. In the simulation section we will show that this new
method is as accurate as HSVD and we will also illustrate the
obtained gain in efficiency. Finally, this gain in efficiency is
illustrated by analyzing part of a MRS image.

To discuss and illustrate the methods, we use simulated and
in vivo low-resolution spectra usually encountered in medical
spectroscopy. The new method is applicable to high-resolution
spectra obtained in other fields as well, since similar SVD-
based algorithms have already been applied to such spectra
(13). Further, the new method can be extended to the analysis
of two-dimensional spectra (14) much like HSVD.

We mention that HLSVD, a fast version of HSVD, has
already been developed in Ref. (15). HLSVD is based on the
Lanczos procedure (16) and gives computational savings in
most cases. However, HLSVD has the disadvantage that it can
slow down in case of repeated or close singular values (15).
The Lanczos method also suffers from the loss of orthogonality
of the Lanczos vectors in finite precision and lacks rigorous
supporting theory. The newly developed algorithm offers
nearly the same computational savings as the Lanczos proce-
dure but does not suffer from these drawbacks (17).

METHODS

HSVD

The underlying principles of HSVD are discussed in (15)
and will not be repeated here. Next we give a short outline of
the HSVD algorithm.

HSVD.
Step 1.Arrange the data pointsyl, l 5 0, . . . , N 2 1, in a

Toeplitz matrixT as follows:

T 5 3
ym21 ym · · · yN21

ym22 ym21 · · · yN22···
···

···
···

y0 y1 · · · yn21

4 ,

m $ K, N 5 m 1 n 2 1 . [2]

Step 2.Compute the SVD of the Toeplitz matrixT, that is,

Tm3n 5 Um3mSm3nVn3n
H ,

whereS 5 diag~s1, . . . , sp! , s1 $ · · ·$ sp,

p 5 min(m, n), and the superscriptH denotes the Hermitian
conjugate. In order to obtain the best parameter accuracy it is

recommended to chooseT as square as possible (18), that is,
m 5 n(11) 5 N/2.

Step 3.TruncateT to a matrixTK of rank K:

TK 5 UKSKVK
H .

UK andVK are, respectively, the firstK columns ofU andV; SK

is theK 3 K upper-left submatrix ofS. The model orderK is
chosen equal to the number of sinusoids that comprise the
measured signal. In case a water peak is present we have to
take into account the non-Lorentzian lineshape of this peak. In
practical situations only a few Lorentzians are needed to de-
scribe the water region (12).

Step 4.Compute the least squares solutionÊ of the following
(incompatible) system:

VK
~t!EH < VK

~b! ,

whereVK
(t) andVK

(b) are derived fromVK by omitting its first and
last row, respectively. OnceE is estimated, itsK eigenvalues
give the signal pole estimates:

ẑk 5 e~2d̂k1j2pf̂k!Dt, k 5 1, . . . , K .

From these signal poles it is easy to obtain estimates of the
dampingsdk and frequenciesfk.

Step 5.Finally, fill in the estimatesẑk, k 5 1, . . . ,K, in the
N model equations and compute the least squares solutionĉk 5
âke

jf̂k, k 5 1, . . . ,K, of

yl < O
k51

K

ckẑk
l , l 5 0, . . . , N 2 1 .

In this way estimates for the amplitudesak and phasesfk are
obtained.

Note that here the data are arranged in a Toeplitz matrix
instead of a Hankel matrix and that the left signal subspaceVK

is used instead ofUK as is done in (15). Both modifications
have been made to make the similarity between HSVD and the
new method as great as possible, but they do not change the
properties of the algorithm.

The computationally most intensive part of the algorithm is the
computation of the SVD of them 3 n matrix T, which requires
2(mn2 1 n3) floating-point operations (2( z ) denotes the order of
magnitude). The least squares solutionÊ can be computed effi-
ciently by making use of the Sherman–Morrison matrix-inversion
formula (16). As can be seen from the preceding algorithm, the
full SVD is not required. Instead, only the firstK columns ofV are
required, which estimates the signal subspace. SinceK is usually
much smaller thann, much of the computational effort in com-
puting a full SVD is wasted. Therefore, we introduce a new matrix
decomposition recently introduced in numerical linear algebra
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(17). These so-called low-rank revealing decompositions only
compute approximations to the desired signal subspace, resulting
in considerable computational savings.

HLR

A rank-revealing ULV (RR ULV) decomposition ofT is of
the following form:

T 5 U# L# V# H, L# 5 S L# K 0

H# E# D , [3]

whereL#K is a lower triangularK 3 K matrix whose singular
values approximate the firstK singular values ofT. The 2-norm of
(H# , E# ) is of the same order of magnitude as the (K 1 1)th singular
value ofT. U# andV# are unitary matrices.V# K, consisting of the first
K columns ofV# , approximates the signal space. Speciallow-rank
revealing (LRR) decompositions have been developed (17) to
handle the case in which the dimension of the signal subspace is
small, that is,K ! n. We can use a LRR algorithm to computeV# K

and use it as an estimate for the signal subspace instead of
computing a full SVD and truncatingV to rankK. Several ver-
sions of LRR algorithms have been developed (17, 19). In caseK
! n these algorithms are able to computeV# K much more effi-
ciently than their SVD counterparts. The algorithm presented
here, originally developed by R. Fierro, has the same properties as
the algorithms published in (17), but makes optimal use of the
Toeplitz structure of the original data matrix and therefore results
in the largest computational savings (19). It is called the Product
Form LULV algorithm (PFLULV). Next, we give a brief descrip-
tion of the algorithm.

First, an estimateuest
(1) of the left singular vector belonging to the

largest singular value ofT is estimated. Therefore the Lanczos
method (16) is used. The stopping criterion for the Lanczos
iterations is based on the current singular value estimatedj com-
puted during thejth iteration and the method proceeds until |dj 2
dj21| , hdj, whereh $ 0 is a threshold or a maximum number of
iterations is reached. For MRS applications the threshold can be
set to 1e 2 03 and the maximum number of iterations to 15, as
done in this paper. Based onuest

(1) an estimate of the largest singular
value sest

(1) of T and corresponding right singular vectorvest
(1) are

computed, that is,sest
(1) 5 \THuest

(1)\ andvest
(1) 5 (THuest

(1))/sest
(1). The

vectorsuest
(1) andvest

(1) are then reduced to a complex unit vector by
Householder transformations (16) represented by Householder
matricesP(1) andQ(1):

P~1!uest
~1! 5 ~ejc, 0, . . . , 0!T andQ~1!vest

~1! 5 ~ejw, 0, . . . , 0!T. [4]

\ z \ denotes the Euclidean vector norm. In general the House-
holder matrixP is of the formP 5 I22zzH /zHz, whereI is the
identity matrix,z 5 x 1 sign(x(1))\x\(1, 0, . . . , 0)T, sign(x(1)) is
equal to the sign of the first element ofx, andx is the vector to

be reduced to a complex unit vector. Note that these House-
holder matrices are entirely defined by one vectorz.

SinceP(1) andQ(1) are Hermitian and unitary, we can easily
deduce from Eq. [4] that the matrices have the following
partition:

P~1! 5 @uest
~1!e2jc, P2

~1! # andQ~1! 5 @vest
~1!e2jw , Q2

~1! # .

It is then easy to see that elements 2 throughn of the first row
of L 5 P(1)TQ(1) are equal to zero:

uest
~1!H

TQ2
~1! 5 sest

~1! ~vest
~1!H

Q2
~1! ! 5 sest

~1! ~0! 5 0 .

Throughout the algorithm the relationT 5 U# (i)LV# (i)H

has to hold.
Therefore,U# (1) 5 P(1)H andV# (1) 5 Q(1). The matricesU# (1) and
V# (1), however, need not be computed explicitly. Indeed, as shown
earlier, the associated Householder vectors are therefore used and
stored instead as shown in the following outline of PFLULV. The
same procedure is then repeated on the submatrixL(2:m, 2:n) 5
P2

(1)TQ2
(1), which, however, is not explicitly formed. The notation

L(i:m, j:n) is used here to denote a submatrix ofL consisting of the
rows i to m and columnsj to n. In this way the original Toeplitz
structure ofT is preserved, allowing fast matrix-vector multipli-
cations (20) using the fast Fourier transform (FFT) to be per-
formed each timeuest

(i) is estimated using the Lanczos procedure.
Another big advantage of HLR is the fact that the (m 3 n)
Toeplitz matrix need not be stored in computer memory since
matrix-vector multiplications withT or TH which need to be
performed during the course of the algorithm are entirely defined
by the original data vector [y0, . . . , yN21] (20).

PFLULV.
Step 1.Initialize U# (0) 4 [ ] and V# (0) 4 [ ], where [ ]

denotes the empty matrix.
Step 2.For i 5 1: K

Step 2.1.Compute estimateuest
(i) of L (i :m, i :n) 5

((j51
i21 P2

( j ) )H 3 T 3 (j51
i21 Q2

( j ) . Com-
pute sest

(i ) 5 \L (i :m, i :n)Huest
(i ) \ andvest

(i )

5 (L (i :m, i :n)H uest
(i ) )/sest

(i ) .
Step 2.2.Determine the Householder vectorszu and

zv which determine Householder matrices
P(i) and Q(i) such thatP(i ) uest

(i ) 5 (ejc,
0, . . . , 0)T and Q( i ) vest

( i ) 5 (ej w, 0,
. . . , 0)T. Omit the first column ofP(i) and
Q(i) to define the related submatricesP2

(i)

andQ2
(i).

Step 2.3.Append the Householder vectorszu andzv:

U# ~i! 5 FU# ~i21!, F 0
zu
GG andV# ~i! 5 FV# ~i21!, F 0

zv
GG ,

0 represents the zero vector/matrix of ap-
propriate dimensions.

End (For)
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Step 3.Use (16) Algorithm 5.1.2 to accumulate theK col-
umns ofV# (K) to obtain the estimateV# K for the signal subspace
as follows:

F I K21 0
0 Q~K! G · · ·F 1 0

0 Q~2! GQ~1!F I K

0G
IK represents the identity matrix of sizeK 3 K.

The algorithm HLR is obtained by replacing the SVD by the
PFLULV algorithm. The outline of HLR is then as follows:

HLR.
Step 1.ComputeV# K using PFLULV.
Step 2–3.SeeStep 4–5of HSVD with VK replaced byV# K.

SIMULATIONS

In this section we address the accuracy and the efficiency of
HLR compared to HSVD when used to preprocess1H spectra.
To this end we perform a Monte Carlo study. The simulation
signal we use is derived from anin vivo 1H NMR echo signal
and was previously used in (21). From the noiseless signal 400
noisy realizations were generated with noise standard deviation
s (both on the real and imaginary parts). One of the used noisy
simulation signals is displayed in Fig. 1.

The following signal processing protocol is applied to all
simulation signals:

1. The entire signal is fitted using HLR or HSVD, and the
model orderK 5 10 is used. To this end the 512 data points are
arranged in a 2573 256 Toeplitz matrix.

FIG. 2. RMSE for amplitudes of peak 1 and 2 of the simulation signal for different values of the noise standard deviation after removal of the water peak
and quantification of the residual metabolites using AMARES. The crosses and the circles denote that the water peak was removed using HLR and HSVD,
respectively. In the water removal preprocessing step the model order used was 10 and the data were arranged in a 2573 256 data matrix.

FIG. 1. Frequency domain representation of noisy simulated1H spectrum (s 5 0.8). In the left figure the entire signal is represented; the figure to the right
zooms in on the region of interest.

200 VANHAMME ET AL.



2. The peaks with frequencies belonging to the water region
(defined as the region below 20 Hz) are used to reconstruct the
water peak.

3. The reconstructed signal is subtracted from the original
signal.

4. The residual signal is quantified using AMARES (2) and
estimates of the metabolites of interest are obtained.

We compared HLR and HSVD using the root mean-square
error (RMSE) of the final parameter estimates. In Fig. 2 the
RMSE of the amplitudes of peak 1 and 2 obtained by removing
the water via HSVD and HLR and subsequent quantification of
the residual signal with AMARES are compared. For peak 1
the RMSE obtained using HSVD preprocessing is slightly
lower than that obtained using HLR preprocessing. For peak 2
the situation is reversed. For the other peaks the situation is
similar—the obtained RMSEs of all parameters using HSVD
preprocessing and HLR preprocessing are almost the same and
neither of the two methods leads to an overall lowest RMSE.

It can be concluded that both methods, when used to subtract
the water peak, lead to a comparable parameter accuracy of the
metabolites of interest obtained after the final parameter esti-
mation with a NLLS algorithm.

As a measure of efficiency we compare the number of flops
(obtained by MATLAB) required by PFLULV to the number
of flops required by the SVD for a 2573 256 Toeplitz data

matrix. Here a flop denotes a floating-point operation, either an
addition or a multiplication. This measure gives a computer-
independent comparison of the computational complexity of
the two algorithms. We also compared the overall number of
flops required by HSVD and HLR. The results for different
noise levels are displayed in Table 1.

To get an idea of the difference in actual execution time
between HSVD and HLR we implemented both algorithms in
FORTRAN 77 making use of the BLAS and LINPACK librar-
ies (available from netlib (22)). The timing experiments were
performed on a SUN ULTRA 2 (200 MHz). The results are
displayed in Table 2. Although the timing results are compiler
and computer dependent, Table 2 indicates the gain in effi-
ciency in terms of actual CPU times is a factor of 35 to 40 in
this particular case (K 5 10, a 2573 256 data matrix). The
CPU time needed by HLR to quantify one of these simulation
signals is of the order of 0.3 s as opposed to 11 s for HSVD.
The subsequent analysis using AMARES takes about 2 s per
signal. This shows that preprocessing using HSVD takes more
time than the actual quantification using AMARES, which is of
course unacceptable, especially when a large amount of data
has to be analyzed.

APPLICATION TO IN VIVO MRS IMAGE

This fast algorithm is particularly useful when a lot of data
needs to be processed as is the case in MRSI. To illustrate the
gain in efficiency in the analysis ofin vivo MRS signals we
compare the performance of HLR and HSVD to analyze part of
an MRSI data set. The data set under investigation was mea-
sured at the University of Alabama at Birmingham and pro-
vided by Dr. J. A. den Hollander, Center for NMR Research
and Development, University of Alabama at Birmingham (see
Acknowledgments). The measurements were performed on a
1.5-T ACS/S15 Philips Gyroscan, using a protocol developed
by Philips Medical Systems (23).

Since we wanted to process only signals containing metab-

TABLE 1
Comparison between SVD and LRR, HSVD

and HLR in Terms of Flops

s 5 0.4 s 5 0.5 s 5 0.6 s 5 0.7 s 5 0.8

flSVD/flLRR 57.4 57.2 57.0 56.8 56.2
flHSVD/flHLR 47.0 46.9 46.9 46.8 46.6

Note.In the first row the ratio of the number of flops (in MATLAB) needed
by SVD to that required by the LRR algorithm PFLULV are displayed as a
function of the noise level. In the second row the ratio of the number of flops
required by HSVD to that required by HLR are displayed as a function of the
noise level. The imposed model orderK is 10 and the size of the data matrix
used is 2573 256.

TABLE 2
Comparison between SVD and LRR, HSVD

and HLR in Terms of CPU Times

s 5 0.4 s 5 0.5 s 5 0.6 s 5 0.7 s 5 0.8

tSVD/tLRR 42.3 45.5 41.8 39.9 39.8
tHSVD/tHLR 37.4 40.2 36.9 35.2 35.2

Note. In the first row the ratio of the CPU time needed by SVD to that
required by the LRR algorithm PFLULV are displayed as a function of the
noise level. In the second row the ratio of the CPU time required by HSVD to
that required by HLR are displayed as a function of the noise level. The
imposed model orderK is 10 and the size of the data matrix used is 2573 256.

FIG. 3. Frequency domain representation of anin vivo 1H signal of the
MRSI data set. The water region is defined as all peaks with a frequency higher
than278 Hz.

201FAST REMOVAL OF RESIDUAL WATER IN PROTON SPECTRA



olites of interest, 20 signals from the middle region of the
image were selected and preprocessed. In these signals contri-
butions from water have to be removed. If the entire image is
to be processed the protocol explained in (23) can be used.

An exponentially damped sinusoid is assumed to contribute
to the water peak if it has a frequency higher than278 Hz. See
Fig. 3 for a representative signal.

The number of data points used in the preprocessing stage was
512. Five exponentials were enough to remove the contributions
from water. Figure 4 displays the signal of Fig. 3 after prepro-
cessing with HLR (the imposed model order was 5).

To show, however, the influence of the chosen model order
on the efficiency of the algorithm, model orders of 10 and 20
were also used. The total CPU time needed to preprocess 20
signals using HLR and a model order of 5 is only 3.15 s
compared to 259.6 s using HSVD. The use of HLR in this case
represents a reduction of a factor of 82.4 in CPU time. As
illustrated in Table 3, the gain in efficiency decreases as more
exponentials are estimated.

To show the influence on the number of data points used, the
same analysis for different model orders is done using only 256
data points. The results are displayed in Table 4. As expected,
the gain in efficiency decreases when the number of data points
decreases. Although the use of only 256 data points is unac-
ceptable for this type of application, it nonetheless shows the
influence of the number of data points on the actual CPU times.

CONCLUSIONS

In this paper HLR is presented as an alternative to HSVD for
the removal of the water peak in1H spectra. HLR uses a
low-rank revealing decomposition to extract the signal sub-
space instead of a full SVD as done in HSVD. This results in
a considerable improvement in efficiency without affecting the
accuracy of the parameters of interest. The latter can be esti-
mated after the preprocessing stage by means of an iterative
nonlinear least algorithm such as AMARES.

The gain in efficiency depends on both the number of data
points of the signal and the imposed model order, and is more
pronounced when the number of data points becomes larger
and the model order smaller. For a typical signal consisting of
512 data points and a model order of 10, the CPU time required
by HLR is less than that required for HSVD by a factor of
about 35 to 40.
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